4.6 Article

Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments

Journal

FRONTIERS IN MICROBIOLOGY
Volume 6, Issue -, Pages -

Publisher

FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fmicb.2015.00490

Keywords

Bacterial antagonism; diffusion; community ecology; microbial ecology; microbial physiology

Categories

Funding

  1. Consejo Nacional de Ciencia y Tecnologia (CONACyT, Mexico) [128673]
  2. Universidad Nacional Autonoma de Mexico [PAPIT IN203712]
  3. Alianza WWF-Fundacion Carlos Slim

Ask authors/readers for more resources

Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these molecules need to be produced to maintain a certain amount of them close to the producing cell before they are diluted into the environment has not been explored so far. To understand the potential cost of production of antagonistic substances in water environments, we used two different theoretical approaches. Using a probabilistic model, we determined the rate at which a cell needs to produce individual molecules in order to keep on average a single molecule in its vicinity at all times. For this minimum protection, a cell would need to invest 3.92 x 10(-22) kg s(-1) of organic matter, which is 9 orders of magnitude lower than the estimated expense for growth. Next, we used a continuous model, based on Fick's laws, to explore the production rate needed to sustain minimum inhibitory concentrations around a cell, which would provide much more protection from competitors. In this scenario, cells would need to invest 1.20 x 10(-11) kg s(-1), which is 2 orders of magnitude higher than the estimated expense for growth, and thus not sustainable. We hypothesize that the production of antimicrobial compounds by bacteria in aquatic environments lies between these two extremes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available