4.5 Review

Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase

Journal

VIRUS RESEARCH
Volume 134, Issue 1-2, Pages 124-146

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.virusres.2007.12.015

Keywords

HIV; reverse transcriptase; drug resistance; thymidine analogues; phosphorolysis; DNA polymerase

Categories

Ask authors/readers for more resources

Human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors can be classified into nucleoside and nonnucleoside RT inhibitors. Nucleoside RT inhibitors are converted to active triphosphate analogues and incorporated into the DNA in RT-catalyzed reactions. They act as chain terminators blocking DNA synthesis, since they lack the 3'-OH group required for the phosphodiester bond formation. Unfortunately, available therapies do not completely suppress viral replication, and the emergence of drug-resistant HIV variants is facilitated by the high adaptation capacity of the virus. Mutations in the RT-coding region selected during treatment with nucleoside analogues confer resistance through different mechanisms: (i) altering discrimination between nucleoside RT inhibitors and natural substrates (dNTPs) (e.g. Q151M, M184V, etc.), or (ii) increasing the RT's phosphorolytic activity (e.g. M41L, T215Y and other thymidine analogue resistance mutations), which in the presence of a pyrophosphate donor (usually ATP) allow the removal of chain-terminating inhibitors from the 3' end of the primer. Both mechanisms are implicated in multi-drug resistance. The excision reaction can be modulated by mutations conferring resistance to nucleoside or nonnucleoside RT inhibitors, and by amino acid substitutions that interfere with the proper binding of the template-primer, including mutations that affect RNase H activity. New developments in the field should contribute towards improving the efficacy of current therapies. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available