4.5 Article

Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes

Journal

VIRUS RESEARCH
Volume 131, Issue 2, Pages 233-242

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.virusres.2007.09.013

Keywords

bacteriophage; polymorphonuclear leukocytes; endotoxin; reactive oxygen species

Categories

Ask authors/readers for more resources

It has been known that administration of antibiotics may lead to excessive release of bacterial endotoxins and complicate clinical course of patients with Gram-negative infections. This concern may also apply to phages. Endotoxin may in turn activate neutrophils to produce reactive oxygen species (ROS) that are believed to play an important role in the pathogenesis of multiple organ dysfunction in the course of sepsis. We showed that a purified T4 phage preparation with low-endotoxin content could significantly diminish the luminol-dependent chemiluminescence (CL) of peripheral blood polymorphonuclear leukocytes (PMNs) both stimulated by lipopolysaccharides (LPSs) isolated from different Escherichia coli strains. This effect was also observed for live bacteria used for PMNs stimulation and was independent of bacterial susceptibility for T4-mediated lysis. Our data suggest, that phage-mediated inhibition of LPS- or bacteria-stimulated ROS production by PMNs may be attributed not only to phage-PMNs interactions, but also to phage-LPS interactions and bacterial lysis (in case of homologous phage). Interestingly, the T4 preparation did not influence ROS formation by PMNs stimulated with PMA. This suggests that the observed phenomena are also dependent upon the nature of activator. Bacteriophage-mediated inhibition of ROS formation by cells exposed to endotoxin provides new evidence for possible interactions between phages and mammalian cells. It helps in understanding the role of phages in our environment and may also be of important clinical significance. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available