4.4 Review

Contributions of humoral and cellular immunity to vaccine-induced protection in humans

Journal

VIROLOGY
Volume 411, Issue 2, Pages 206-215

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.virol.2010.12.016

Keywords

Vaccines; Immunity

Categories

Funding

  1. National Institute of Allergy and Infectious Diseases, National Institutes of Health [R43 AI079898, U01 AI082196, U54 AI081680]
  2. ONPRC [RR00163]
  3. Najit Technologies Inc.

Ask authors/readers for more resources

Vaccines play a vital role in protecting the host against infectious disease. The most effective licensed vaccines elicit long-term antigen-specific antibody responses by plasma cells in addition to the development of persisting T cell and B cell memory. The relative contributions of these different immune cell subsets are context-dependent and vary depending on the attributes of the vaccine (i.e., live/attenuated, inactivated, and subunit) as well as the biology of the pathogen in question. For relatively simple vaccines against bacterial antigens (e.g., tetanus toxin) or invariant viruses, the immunological correlates of protection are well-characterized. For more complex vaccines against viruses, especially those that mutate or cause latent infections, it is more difficult to define the specific correlates of immunity. This often requires observational/natural history studies, clinical trials, or experimental evaluation in relevant animal models in order for immunological correlates to be determined or extrapolated. In this review, we will discuss the relative contributions of virus-specific T cell and B cell responses to vaccine-mediated protection against disease. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available