4.8 Article

SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis

Journal

ELIFE
Volume 4, Issue -, Pages -

Publisher

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.06659

Keywords

-

Categories

Funding

  1. European Research Council (ERC) [ERC StG 260853]
  2. Max-Planck-Gesellschaft
  3. National Research Foundation of Korea [2013-034955]
  4. National Research Foundation of Korea [2010-0015072] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Smc-ScpAB forms elongated, annular structures that promote chromosome segregation, presumably by compacting and resolving sister DNA molecules. The mechanistic basis for its action, however, is only poorly understood. Here, we have established a physical assay to determine whether the binding of condensin to native chromosomes in Bacillus subtilis involves entrapment of DNA by the Smc-ScpAB ring. To do so, we have chemically cross-linked the three ring interfaces in Smc-ScpAB and thereafter isolated intact chromosomes under protein denaturing conditions. Exclusively species of Smc-ScpA, which were previously cross-linked into covalent rings, remained associated with chromosomal DNA. DNA entrapment is abolished by mutations that interfere with the Smc ATPase cycle and strongly reduced when the recruitment factor ParB is deleted, implying that most Smc-ScpAB is loaded onto the chromosome at parS sites near the replication origin. We furthermore report a physical interaction between native Smc-ScpAB and chromosomal DNA fragments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available