4.8 Article

The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation

Journal

ELIFE
Volume 4, Issue -, Pages -

Publisher

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.07736

Keywords

-

Categories

Funding

  1. Human Frontier Science Program (HFSP) [CDA-00001/2010-C]
  2. Austrian Science Fund (FWF) [Y444-B12, P 25522-B20, MCBO (W01101), SFB021 (F21)]
  3. European Molecular Biology Organization (EMBO) [ALTF 642-2012, EMBOCOFUND2010, GA-2010-267146]
  4. Marie Curie Actions cofunding [ALTF 642-2012, EMBOCOFUND2010, GA-2010-267146]
  5. MUI START [2013042023]
  6. Tiroler Wissenschaftfonds
  7. Vienna Science and Technology Fund WWTF [VRG10-001]
  8. Austrian Science Fund (FWF) [P25522, Y444] Funding Source: Austrian Science Fund (FWF)
  9. Austrian Science Fund (FWF) [P 25522, Y 444] Funding Source: researchfish

Ask authors/readers for more resources

The degradation and recycling of cellular components is essential for cell growth and survival. Here we show how selective and non-selective lysosomal protein degradation pathways cooperate to ensure cell survival upon nutrient limitation. A quantitative analysis of starvation-induced proteome remodeling in yeast reveals comprehensive changes already in the first three hours. In this period, many different integral plasma membrane proteins undergo endocytosis and degradation in vacuoles via the multivesicular body (MVB) pathway. Their degradation becomes essential to maintain critical amino acids levels that uphold protein synthesis early during starvation. This promotes cellular adaptation, including the de novo synthesis of vacuolar hydrolases to boost the vacuolar catabolic activity. This order of events primes vacuoles for the efficient degradation of bulk cytoplasm via autophagy. Hence, a catabolic cascade including the coordinated action of the MVB pathway and autophagy is essential to enter quiescence to survive extended periods of nutrient limitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available