4.8 Article

A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis

Journal

ELIFE
Volume 4, Issue -, Pages -

Publisher

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.07304

Keywords

-

Categories

Funding

  1. National Institutes of Health (NIH) [R01 EY017370, T32 GM008268]

Ask authors/readers for more resources

Small heat shock proteins (sHSPs) are essential 'holdase' chaperones that form large assemblies and respond dynamically to pH and temperature stresses to protect client proteins from aggregation. While the alpha-crystallin domain (ACD) dimer of sHSPs is the universal building block, how the ACD transmits structural changes in response to stress to promote holdase activity is unknown. We found that the dimer interface of HSPB5 is destabilized over physiological pHs and a conserved histidine (His-104) controls interface stability and oligomer structure in response to acidosis. Destabilization by pH or His-104 mutation shifts the ACD from dimer to monomer but also results in a large expansion of HSPB5 oligomer states. Remarkably, His-104 mutant-destabilized oligomers are efficient holdases that reorganize into structurally distinct client-bound complexes. Our data support a model for sHSP function wherein cell stress triggers small perturbations that alter the ACD building blocks to unleash a cryptic mode of chaperone action.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available