4.4 Article

Symmetric Multicycle Rapid Thermal Annealing: Enhanced Activation of Implanted Dopants in GaN

Journal

ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY
Volume 4, Issue 9, Pages P382-P386

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0191509jss

Keywords

-

Ask authors/readers for more resources

Selectively activated p-type regions are necessary for many electronic devices that require planar processing. The standard process of implanting p-type dopants, such as Mg, in GaN is notoriously more difficult than in other material systems, as the extremely high temperatures required to activate the implanted Mg also damage the GaN surface. In this research, a novel annealing technique is introduced for this purpose - symmetric multicycle rapid thermal annealing (SMRTA). It is shown that SMRTA is superior to the earlier developed multicycle rapid thermal annealing (MRTA) in terms of improvement of the crystalline quality of implanted GaN. The SMRTA technique was applied to Mg-implanted GaN to realize a rectifying junction. The annealing process detailed in this research will be a key enabling step for future GaN-based devices that require planar processing with selective area implants. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available