4.6 Article

The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus

Journal

CLINICAL EPIGENETICS
Volume 7, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13148-015-0063-7

Keywords

Systemic lupus erythematosus; B cell; Has-miR-1246; EBF1; AKT; P53; Co-stimulatory molecules

Funding

  1. National Basic Research Program of China (973 Plan) [2009CB825605]
  2. State Key Program of National Natural Science of China [30730083]
  3. major international joint research project of the National Natural Science Foundation of China [81220108017]
  4. General Programs of the National Natural Science Foundation of China [30972745]

Ask authors/readers for more resources

Background: The pathogenesis of systemic lupus erythematosus (SLE) has not yet been completely elucidated. One of the hallmarks of SLE is the production of autoantibodies by uncontrolled over-activated B cells. Early B cell factor 1 (EBF1) contributes to the development, activation, and proliferation of B cells through activation of the AKT signaling pathway. Accumulating evidence has demonstrated that several microRNAs (miRNAs) contribute to the pathogenesis of autoimmune diseases through the regulation of B cells in SLE. We aim to investigate the expression patterns of miR-1246 in B cells and its contribution to pathogenesis of SLE. Results: Our results showed that the expression of miR-1246 was significantly decreased in B cells from SLE patients. We verified that miR-1246 specifically targeted the EBF1 messenger RNA (mRNA) by interacting with its 3'-untranslated region (3'-UTR) and regulated the expression of EBF1. Transfection of miR-1246 inhibitors into healthy B cells upregulated the expression of EBF1, enhanced B cell function, and increased the production of B cell surface co-stimulatory molecules CD40, CD80, and CD86. We also observed that abnormal activation of the AKT signaling pathway was associated with decreased P53 expression, leading to the downregulation of the miR-1246 expression; and upregulation of the miR-1246 expression reversed the responsiveness of B cells by inhibiting EBF1 expression. Conclusions: Activated B cells in lupus could decrease the expression of miR-1246 through the AKT-P53 signaling pathway, which in turn enhances the expression of EBF1, thereby promoting further activation of B cells. Conversely, upregulation of miR-1246 could interrupt this amplification pathway. Our findings thus provide a theoretical framework towards the research of novel biological targets in SLE treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available