4.5 Article

Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

Journal

VEHICLE SYSTEM DYNAMICS
Volume 52, Issue 11, Pages 1372-1388

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00423114.2014.938663

Keywords

brake performance; blended braking control; electric powertrain dynamics; electric vehicles; regeneration efficiency; extended Kalman filter

Funding

  1. Natural Science Foundation of China [51075225]

Ask authors/readers for more resources

Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available