4.5 Article

Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice

Journal

VASCULAR PHARMACOLOGY
Volume 55, Issue 5-6, Pages 149-156

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.vph.2011.07.007

Keywords

Diabetes; P-tyrosine; Nephrinuria; Albuminuria; gp91phox; ICAM-1

Funding

  1. Georgia Health Sciences University
  2. American Heart Association

Ask authors/readers for more resources

Tyrosine kinase inhibition is known to reduce diabetes-induced end-organ damage but the mechanisms remain elusive. We hypothesized that inhibition of tyrosine kinase reduces renal inflammation and injury in streptozotocin-induced diabetes. Male C57BL/6 mice were given daily injections of streptozotocin (45 mg/kg/day, i.p. for 5 days); control animals received the vehicle (citrate buffer). Thereafter, streptozotocin-treated mice were treated with genistein (10 mg/kg, i.p three times a week for 10 weeks, n = 8-10/group) or the vehicle (5% DMSO). The streptozotocin-treated mice displayed significant elevation in blood glucose level and decrease in plasma insulin level compared to their vehicle-treated controls. Treatment with genistein reduced blood glucose level (similar to 15%; p<0.05) without a significant effect on plasma insulin level; however, blood glucose remained significantly higher than the control group. The development of diabetes was associated with significant increases in total protein, albumin, nephrin and collagen excretions compared to their controls. In addition, the diabetic mice displayed increased urinary MCP-1 excretion in association with increased renal ICAM-1 expression and apoptotic cells. Furthermore, renal gp91 expression levels and urinary Thio-Barbituric Acid Reactive Substances (TBARs) excretion, indices of oxidative stress, were also elevated in diabetic mice. These changes were associated with increased renal phospho-tyrosine expression and renal phospho-ERK/ERK ratio. Importantly, treatment with genistein reduced all these parameters towards control values. Collectively, the results suggest that the reno-protective effect of genistein likely relates to reduced renal inflammation, oxidative stress and apoptosis in diabetic mice. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available