4.5 Article

Influence of plant, soil, and water on the leaching fraction

Journal

VADOSE ZONE JOURNAL
Volume 7, Issue 2, Pages 420-425

Publisher

WILEY
DOI: 10.2136/vzj2007.0103

Keywords

-

Ask authors/readers for more resources

Reducing the amount of drainage water that contains salts, nutrients, and trace elements may reduce environmental contamination to groundwater by reducing the dissolution of trace-element-containing minerals, maximizing chemical precipitation of salts, and improving nutrient uptake efficiency. If salt accumulates, transpiration and yield will decrease and some fraction of the irrigation water will not be extracted by roots, subsequently becoming drainage. We modeled yield and salt and water budgets under conditions of extended irrigation with poor quality water in amounts ranging from 0.6 to 1.6 times. the ratio of irrigation (1) to reference evaporation (E-0). The surface boundary conditions were taken from a field experiment where melon (Cucumis melo ssp. melo cv. Galia) was irrigated with waters of electrical conductivities of 1.2, 3, 6, and 9 dS/m at I/E-0 = 1.0 for a growing season (1152 h). The model contained one-dimensional solutions to Richards' equation with a root-sink term and the equation of continuity for salt transport. Solutes were treated conservatively. For any given salinity value, the leaching fraction had a minimum value corresponding to the irrigation level where a minimum amount of water was used to control salinity and those minimum values were 0.11, 0.24, 0.44, and 0.54 for salinity levels 1.2, 3, 6, and 9 dS/m. Yield reduction for these irrigation levels were 80, 70, 60, and 40% of maximum possible yields, suggesting an economic price to minimizing drainage and further suggesting that plant-irrigation-drainage relationships are highly self-regulating.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available