4.6 Article

Carbon coatings with low secondary electron yield

Journal

VACUUM
Volume 98, Issue -, Pages 29-36

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.vacuum.2013.03.001

Keywords

Secondary electron yield; Carbon thin films; dc magnetron sputtering

Ask authors/readers for more resources

Carbon thin films for electron cloud mitigation and anti-multipacting applications have been prepared by dc magnetron sputtering in both neon and argon discharge gases and by plasma enhanced chemical vapour deposition (PECVD) using acetylene. The thin films have been characterized using Secondary Electron Yield (SEY) measurements, Scanning Electron Microscopy (SEM), Nuclear Reaction Analysis (NRA) and X-ray Photoemission Spectroscopy (XPS). For more than 100 carbon thin films prepared by sputtering the average maximum SEY is 0.98 +/- 0.07 after air transfer. The density of the films is lower than the density of Highly Oriented Pyrolytic Graphite (HOPG), a fact which partially explains their lower SEY. XPS shows that magnetron sputtered samples exhibit mainly sp(2) type bonds. The intensity on the high binding energy side of C1s is found to be related to the value of the SEY. In addition the initial surface concentration of oxygen has no influence on the resulting SEY, when it is below 16%. The thin films produced by PECVD have a much higher maximum SEY of 1.49 +/- 0.07. Storage conditions in air, namely wrapping in aluminium foil, preserves the low SEY by more than one year. Such coatings have already been applied successfully in accelerators and multipacting test benches. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available