4.5 Article

Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA-PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice

Journal

VACCINE
Volume 27, Issue 30, Pages 4010-4017

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.vaccine.2009.04.033

Keywords

DNA vaccine; Tuberculosis latency antigens; Pulmonary immunization; PLGA-PEI nanoparticles; T cell response

Funding

  1. Foundation Microbiology Leiden
  2. European Commission [LSHP-CF-2003-503367]
  3. Bill and Melinda Gates Foundation
  4. Grand Challenges in Global Health [GC12 82]
  5. ISA Pharmaceuticals B.V., Bilthoven, The Netherlands

Ask authors/readers for more resources

During persistent infection and hypoxic-stress, Mycobacterium tuberculosis (Mtb) expresses a series of Mtb latency antigens. The aim of this study was to evaluate the immunogenicity of a DNA vaccine encoding the Mtb latency antigen Rv1733c and to explore the effect of pulmonary delivery and co-formulation with Poly (D,L-lactide-co-glycolide) (PLGA)-polyethyleneimine (PEI) nanoparticles (np) on host immunity. Characterization studies indicated that PLGA-PEI np kept their nanometer size after concentration and were positively charged. The np were able to mature human dendritic cells and stimulated them to secrete IL-12 and TNF-alpha comparable to levels observed after lipopolysaccharide (LPS) stimulation. Mtb latency antigen Rv1733c DNA prime combined with Rv1733c protein boost enhanced T cell proliferation and IFN-gamma secretion in mice in response to Rv1733c and Mtb hypoxic lysate. Rv1733c DNA adsorbed to PLGA-PEI np and applied to the lungs increased T cell proliferation and IFN-gamma production more potently compared to the same vaccinations given intramuscularly. The strongest immunogenicity was obtained by pulmonary priming with np-adsorbed Rv1733c DNA followed by boosting with Rv1733c protein. These results confirm that PLGA-PEI np are an efficient DNA vaccine delivery system to enhance T cell responses through pulmonary delivery in a DNA prime/protein boost vaccine regimen. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available