4.4 Article

Small interference RNA-mediated silencing of prostate stem cell antigen attenuates growth, reduces migration and invasion of human prostate cancer PC-3M cells

Journal

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.urolonc.2011.02.004

Keywords

Prostatic adenocarcinoma (CaP); Prostate stem cell antigen (PSCA); RNA interference (RNAi)

Funding

  1. National Natural Science Foundation, China [81072112]
  2. Science and Technology Planning Project of Guangdong Province, China [2008B080701035]

Ask authors/readers for more resources

Objectives: Prostate stem cell antigen (PSCA), a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein, is highly expressed in both local and metastatic prostate cancer (CaP). Elevated PSCA expression has been shown to correlate with malignant phenotype and clinical progression. The purpose of the current study is to investigate the therapeutic potential of small interference RNA (siRNA) targeting PSCA on human CaP cells. Materials and methods: A set of two siRNAs directed different regions of human PSCA (siRNA-PSCA) were designed and transfected into a human CaP PC-3M cell line. The silencing effect was screened by RT-PCR and Western blotting. The biological effects of siRNA-PS CA on PC-3M cells were investigated by examining the cell proliferation through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle distribution through flow cytometry, and migration and invasion potencies through transwell invasion assay upon the PSCA silencing. Results: PC-3M cells had positive PSCA expression on immunocytochemical assay. PSCA expression was depleted at 48 hours after transfection with siRNA-PSCA. Silencing of PSCA significantly suppressed cell proliferation. Cell cycle assay showed that the anti-proliferation effect of siRNA-PSCA was mediated by arresting cells in the G(0)/G(1), phase rather than apoptosis. Furthermore, PSCA knockdown resulted in a marked decrease of cell migration and invasion capabilities in PC-3M cells. Conclusions: The present study provides the first evidence that silencing PSCA using siRNA can inhibit the proliferation and invasiveness properties of human CaP cells, which may provide a promising therapeutic strategy for CaP and open a novel avenue toward the investigation of the role of PSCA overexpression in cancers. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available