4.6 Review

Constructing kinetic models of metabolism at genome-scales: A review

Journal

BIOTECHNOLOGY JOURNAL
Volume 10, Issue 9, Pages 1345-1359

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201400522

Keywords

Approximate kinetic models; Constraint-based models; Genome-scale kinetic models; In silico modeling; Monte Carlo kinetic models

Funding

  1. NSERC CREATE in Manufacturing, Materials and Mimetics (M3), Industrial Stream Training Program
  2. University of Toronto
  3. Alexander von Humboldt Foundation
  4. Samsung GRO program
  5. BioFuelNet Canada
  6. NSERC Canada

Ask authors/readers for more resources

Constraint-based modeling of biological networks (metabolism, transcription and signal transduction), although used successfully in many applications, suffer from specific limitations such as the lack of representation of metabolite concentrations and enzymatic regulation, which are necessary for a complete physiologically relevant model. Kinetic models conversely overcome these shortcomings and enable dynamic analysis of biological systems for enhanced in silico hypothesis generation. Nonetheless, kinetic models also have limitations for modeling at genome-scales chiefly due to: (i) model non-linearity; (ii) computational tractability; (iii) parameter identifiability; (iv) estimability; and (v) uncertainty. In order to support further development of kinetic models as viable alternatives to constraint-based models, this review presents a brief description of the existing obstacles towards building genome-scale kinetic models. Specific kinetic modeling frameworks capable of overcoming these obstacles are covered in this review. The tractability and physiological feasibility of these models are discussed with the objective of using available in vivo experimental observations to define the model parameter space. Among the different methods discussed, Monte Carlo kinetic models of metabolism stand out as potentially tractable methods to model genome scale networks while also addressing in vivo parameter uncertainty.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available