4.5 Article

IN VIVO BREAST SOUND-SPEED IMAGING WITH ULTRASOUND TOMOGRAPHY

Journal

ULTRASOUND IN MEDICINE AND BIOLOGY
Volume 35, Issue 10, Pages 1615-1628

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ultrasmedbio.2009.05.011

Keywords

Ultrasound tomography; Total-variation; Sound-speed; Breast imaging

Funding

  1. Michigan Economic Development Corporation (MEDC)
  2. Susan G. Komen Breast Cancer Foundation
  3. U.S. DOE Laboratory-Directed Research and Development program at Los Alamos National Laboratory

Ask authors/readers for more resources

We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1 through 4. Our analysis showed that the improvements for average sharpness (in the unit of (m . s)(-1)) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4-fold compared with the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 +/- 9 m/s (mean +/- SD) and1487 +/- 21 m/s, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548 +/- 17 m/s) was higher, on average, than that of benign ones (1513 +/- 27 m/s) (one-sided p< 0.001). These results suggest that, clinically, sound-speed tomograms can be used to assess breast density (and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor the clinical response of breast cancer patients to neo-adjuvant chemotherapy. (E- mail: lic@karmanos.org) (C) 2009 World Federation for Ultrasound in Medicine & Biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available