4.7 Article

The mechanism of sonochemical degradation of a cationic surfactant in aqueous solution

Journal

ULTRASONICS SONOCHEMISTRY
Volume 18, Issue 2, Pages 484-488

Publisher

ELSEVIER
DOI: 10.1016/j.ultsonch.2010.09.013

Keywords

Laurylpyridinium chloride; Sonochemistry; Degradation mechanism

Funding

  1. David Hay Memorial Fund

Ask authors/readers for more resources

The sonochemical degradation of the cationic surfactant, laurylpyridinium chloride (LPC), in water was studied at concentrations of 0.1-0.6 mM, all below its critical micelle concentration (15 mM). It has been found that the initial step in the degradation of LPC occurs primarily by a pyrolysis pathway. Chemical analysis of sonicated solutions by gas chromatography, electrospray mass spectrometry, and high performance liquid chromatography reveals that a broad range of decomposition products, hydrocarbon gases and water-soluble species, are produced. Propionamide and acetamide were identified as two of the degradation intermediates and probably formed as the result of the opening of the pyridinium ring following OH radical addition. Most of the LPC is eventually converted into carboxylic acids. The complete mineralization of these carboxylic acids by sonolysis is however a comparatively slow process due to the hydrophilic nature of these low molecular weight products. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available