4.7 Article

Growth mechanism and photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical method

Journal

ULTRASONICS SONOCHEMISTRY
Volume 17, Issue 3, Pages 560-565

Publisher

ELSEVIER
DOI: 10.1016/j.ultsonch.2009.10.017

Keywords

Sonochemical method; Nanostructure; ZnO; Photoluminescence

Funding

  1. DST, India.

Ask authors/readers for more resources

Flower-like ZnO nanostructures have been synthesized by starch-assisted sonochemical method and the effect of starch and ultrasound on the formation of ZnO nanostructure has been investigated. It is observed that starch and ultrasonic wave both plays a vital role on the growth of ZnO nanostructure. X-ray diffraction (XRD) pattern indicated that the synthesized flower-like ZnO nanostructures were hexagonal. FTIR spectrum confirms the presence of starch on the surface of flower-like ZnO nanostructure. The photoluminescence spectrum of flower-like ZnO nanostructure consists of band-edge emission at 393 nm as well as emission peaks due to defects. On the basis of structural information provided by Xray diffraction (XRD) and morphological information by Scanning Electron Microscopy (SEM), a growth mechanism is proposed for formation of flower-like ZnO nanostructures. Differential Scanning Calorimetry (DSC) of starch in liquid medium confirms that gelatinization is a two step process involving two phases. (c) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available