4.7 Article

A preliminary in vitro assessment of polymer-shelled microbubbles in contrast-enhanced ultrasound imaging

Journal

ULTRASONICS
Volume 52, Issue 3, Pages 456-464

Publisher

ELSEVIER
DOI: 10.1016/j.ultras.2011.10.008

Keywords

Ultrasound medical imaging; Ultrasound signal processing; Ultrasound contrast agents; Polymer-shelled microbubbles; Multi-pulse techniques

Funding

  1. European Commission

Ask authors/readers for more resources

This paper focuses on the use of poly (vinyl alcohol)-shelled microbubbles as a contrast agent in ultrasound medical imaging. The objective was an in vitro assessment of the different working conditions and signal processing methods for the visual detection (especially in small vessels) of such microbubbles, while avoiding their destruction. Polymer-shelled microbubbles have recently been proposed as ultrasound contrast agents with some important advantages. The major drawback is a shell that is less elastic than that of the traditional lipidic microbubbles. Weaker echoes are expected, and their detection at low concentrations may be critical. In vitro experiments were performed with a commercial ultrasound scanner equipped with a dedicated acquisition board. A concentration of 100 bubbles/mm(3), excitation pressure amplitudes from 120 kPa to 320 kPa, and a central frequency of 3 MHz or 4.5 MHz were used. Three multi-pulse techniques (i.e., pulse inversion, contrast pulse sequence based on three transmitted signals, and contrast pulse sequence in combination with the chirp pulse) were compared. The results confirmed that these microbubbles produce a weaker ultrasound response than lipidic bubbles with a reduced second-order nonlinear component. Nevertheless, these microbubbles can be detected by the contrast pulse sequence technique, especially when the chirp pulse is adopted. The best value of the contrast-to-tissue ratio was obtained at an excitation pressure amplitude of 230 kPa: although this pressure amplitude is higher than what is typically used for lipidic microbubbles, it does not cause the rupture of the polymeric contrast agent. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available