4.7 Article

Ultrasonic transcutaneous energy transfer for powering implanted devices

Journal

ULTRASONICS
Volume 50, Issue 6, Pages 556-566

Publisher

ELSEVIER
DOI: 10.1016/j.ultras.2009.11.004

Keywords

Transcutaneous energy transfer; Powering implanted devices; Ultrasonic energy; Acoustic impedance matching

Funding

  1. Israel Ministry of Science and Technology [3-4772]

Ask authors/readers for more resources

This paper investigates ultrasonic transcutaneous energy transfer (UTET) as a method for energizing implanted devices at power level up to a few 100 mW. We propose a continuous wave 673 kHz single frequency operation to power devices implanted up to 40 mm deep subcutaneously. The proposed UTET demonstrated an overall peak power transfer efficiency of 27% at 70 mW output power (rectified DC power at the load). The transducers consisted of PZT plane discs of 15 mm diameter and 1.3 mm thick acoustic matching layer made of graphite. The power rectifier on the implant side attained 88.5% power transfer efficiency. The proposed approach is analyzed in detail, with design considerations provided to address issues such as recommended operating frequency range, acoustic link matching, receiver's rectifying electronics, and tissue bio-safety concerns. Global optimization and design considerations for maximum power transfer are presented and verified by means of finite element simulations and experimental results. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available