4.7 Article

In vivo imaging of blood flow in the mouse Achilles tendon using high-frequency ultrasound

Journal

ULTRASONICS
Volume 49, Issue 2, Pages 226-230

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2008.08.005

Keywords

Achilles tendinitis; High-frequency ultrasound imaging; Microcirculation

Funding

  1. National Science Council [NSC96-2627-B-007-011, NSC96-2221-E-007-158]

Ask authors/readers for more resources

Objective: Achilles tendinitis is a common clinical problem with many treatment modalities, including physical therapy, exercise and therapeutic ultrasound. However, evaluating the effects of current therapeutic modalities and studying the therapeutic mechanism(s) in vivo remains problematic. In this study, we attempted to observe the morphology and microcirculation changes in mouse Achilles tendons between pre- and post-treatment using high-frequency (25 MHz) ultrasound imaging. A secondary aim was to assess the potential of high-frequency ultrasound in exploring therapeutic mechanisms in small-animal models in vivo. Methods: A collagenase-induced mouse model of Achilles tendinitis was adopted, and 5 min treatment of continuous-mode low-frequency (45 kHz) ultrasound with 47 mW/cm(2) maximum intensity and 16.3 cm(2) effective beam radiating area was applied. The B-mode images showed no focal hypoechoic regions in normal Achilles tendons either pre- or post-treatment. The Doppler power energy and blood flow rate were measured within the peritendinous space of the Achilles tendon. Conclusion: An increase in the microcirculation was observed soon after the low-frequency ultrasound treatment, which was due to immediate induction of vascular dilatation. The results suggest that applying high-frequency Doppler imaging to small-animal models will be an invaluable aid in explorations of the therapeutic mechanism(s). Our future work includes using imaging to assess microcirculation changes in tendinitis between before and after treatment over a long time period, which is expected to yield useful physiological data for future human studies. (C) 2008 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available