4.4 Article Proceedings Paper

Imaging spin filter for electrons based on specular reflection from iridium (001)

Journal

ULTRAMICROSCOPY
Volume 130, Issue -, Pages 63-69

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultramic.2013.03.017

Keywords

Hemispherical electron energy analyzer; Imaging spin filter; Ir (001); Multichannel spin detection

Categories

Ask authors/readers for more resources

As Stern-Gerlach type spin filters do not work with electrons, spin analysis of electron beams is accomplished by spin-dependent scattering processes based on spin-orbit or exchange interaction. Existing polarimeters are single-channel devices characterized by an inherently low figure of merit (FoM) of typically 10(-4)-10(-3). This single-channel approach is not compatible with parallel imaging microscopes and also not with modern electron spectrometers that acquire a certain energy and angular interval simultaneously. We present a novel type of polarimeter that can transport a full image by making use of k-parallel conservation in low-energy electron diffraction. We studied specular reflection from Ir (001) because this spin-filter crystal provides a high analyzing power combined with a lifetime in UHV of a full day. One good working point is centered at 39 eV scattering energy with a broad maximum of 5 eV usable width. A second one at about 10 eV shows a narrower profile but much higher FoM. A relativistic layer-KKR SPLEED calculation shows good agreement with measurements. (C) 2013 Elsevier BY. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available