4.1 Article

Expression and regulatory function of miRNA-182 in triple-negative breast cancer cells through its targeting of profilin 1

Journal

TUMOR BIOLOGY
Volume 34, Issue 3, Pages 1713-1722

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1007/s13277-013-0708-0

Keywords

Triple-negative breast cancer; MicroRNA-182; PFN1 gene

Categories

Funding

  1. National Natural Science Foundation of China [81150011]

Ask authors/readers for more resources

We aimed to evaluate the expression of microRNA-182 (miR-182) in triple-negative breast cancer (TNBC) tissues and the TNBC cell line MDA-MB-231 and to investigate the effects of mirR-182 on the cellular behavior of MDA-MB-231 and the expression of the target gene profilin 1 (PFN1), thus providing new methods and new strategies for the treatment of TNBC. Quantitative real-time PCR (qRT-PCR) was utilized to evaluate the expression of miR-182 in TNBC tissues, relatively normal tissues adjacent to TNBC and the TNBC cell line MDA-MB-231. Forty-eight hours after the MDA-MB-231 cells were transfected with the miR-182 inhibitor, qRT-PCR was utilized to detect the changes in miR-182 expression levels, and an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was utilized to determine the effects of miR-182 on cell viability. Flow cytometry was adopted to determine whether miR-182 affects the proliferation rates and apoptosis levels of the MDA-MB-231 cells. The transwell migration assay method was used to investigate the effects of miR-182 on the migration of the MDA-MB-231 cells. A luciferase reporter gene system was applied to validate that PFN1 was the target gene of miR-182. Western blot was used to measure the effects of miR-182 on the PFN1 protein expression levels in the cells. qRT-PCR results showed that compared with the relatively normal tissues adjacent to TNBC, miR-182 expression was significantly increased in the TNBC tissues and the MDA-MB-231 cells (p < 0.01). Compared with the control group, MDA-MB-231 cells transfected with the miR-182 inhibitor and incubated for 48 h showed significantly decreased miR-182 expression (p < 0.01). The results of an MTT assay showed that inhibition of miR-182 in MDA-MB-231 cells led to significantly reduced cell viability (p < 0.05). Flow cytometry analysis indicated that inhibition of miR-182 expression resulted in significantly decreased cell proliferation (p < 0.05) and significantly increased levels of apoptosis (p < 0.05). The results of a transwell migration assay showed that after inhibited of miR-182 expression, the number of cells passing through the transwell membranes was significantly decreased (p < 0.05). The results from a luciferase reporter gene system showed that compared with the control group, the relative luciferase activity of the group transfected with the miR-182 inhibitor was significantly increased (p < 0.05). Western blot analysis showed that compared with the control group, PFN1 protein expression levels were significantly increased in the MDA-MB-231 cells transfected with the miR-182 inhibitor and incubated for 48 h (p < 0.05). In conclusion, miR-182 is upregulated in TNBC tissues and cells. It promotes the proliferation and invasion of MDA-MB-231 cells and could negatively regulate PFN1 protein expression. Treatment strategies utilizing inhibition of miR-182 expression or overexpression of the PFN1 gene might benefit patients with TNBC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available