4.3 Review

The role of nuclear technologies in the diagnosis and control of livestock diseases-a review

Journal

TROPICAL ANIMAL HEALTH AND PRODUCTION
Volume 44, Issue 7, Pages 1341-1366

Publisher

SPRINGER
DOI: 10.1007/s11250-012-0077-5

Keywords

Nuclear techniques; Radiation attenuation; Radiolabeled probes; Radioimmunoassay; Disease diagnosis; Stable isotopes

Ask authors/readers for more resources

Nuclear and nuclear-related technologies have played an important role in animal health, particularly in relation to disease diagnosis and characterization of pathogenic organisms. This review focuses primarily on how and where nuclear technologies, both non-isotopic and isotopic methods, have made their impact in the past and where it might be expected they could have an impact in the future. The review outlines the extensive use of radiation attenuation in attempts to create vaccines for a multiplicity of pathogenic organisms and how the technology is being re-examined in the light of recent advances in irradiation techniques and cryopreservation/lyophilization that might obviate some of the problems of maintenance of viable, attenuate vaccines and their transport and use in the field. This approach could be used for a number of parasitic diseases where vaccination has been problematic and where investigations into the development of molecular vaccines have still failed to deliver satisfactory candidates for generating protective immune responses. Irradiation of antigens or serum samples also has its uses in diagnosis, especially when the samples need to be transported across international boundaries, or when handling the pathogens in question when carrying out a test presents serious health hazards to laboratory personnel. The present-day extensive use of enzyme immunoassays and molecular methods (e.g., polymerase chain reaction) for diagnosis and characterization of animal pathogens has its origins in the use of isotope-labeled antigens and antibodies. These isotopic techniques that included the use of Se-75, P-32, I-125, and S-35 isotopes enabled a level of sensitivity and specificity that was hitherto unrealized, and it is prescient to remind ourselves of just how successful these technologies were, in spite of their infrequent use nowadays. Finally, the review looks at the potential for stable isotope analysis for a variety of applications-in the tracking of animal migrations, where the migrant are potential carriers of transboundary animal diseases, and where it would be useful to determine the origins of the carrier, e.g., Highly Pathogenic Avian Influenza and its dissemination by wild water fowl. Other applications could be in monitoring sequestered microbial culture (e.g., rinderpest virus) where in the case of accidental or deliberate release of infective culture it would be possible to identify the laboratory from which the isolate originated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available