4.4 Article

Solid Particle Erosion Behavior of WC-CoCr Nanostructured Coating

Journal

TRIBOLOGY TRANSACTIONS
Volume 56, Issue 5, Pages 781-788

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10402004.2013.797532

Keywords

Coatings; Wear-Resistant; Erosive Wear; Wear Mechanisms

Ask authors/readers for more resources

In the present study, solid particle erosion resistance of high-velocity oxy-fuel (HVOF)-sprayed WC-CoCr coatings was evaluated. Erosion testing was conducted using alumina (Al2O3) powder as the erodent with three different impact angles (30, 60, and 90 degrees) and impact velocity was kept constant. The coatings were deposited using two different powders; one was composed of conventional WC particles and second one contained nanoscale particles mixed with CoCr binder material. Erosion testing was carried out at room temperature using an air-jet erosion test setup. The effect of varying impact angles was studied and discussed with the help of scanning electron microscopy images of worn surfaces of coatings. The results showed that coating properties like microhardness and fracture toughness have a strong influence on the erosion behavior. During erosion testing, material was removed by fracturing and pullout of WC grains from the binder matrix. The morphology of the eroded surface also showed cutting, lip, and groove formation in the binder matrix caused by the repetitive impacts of erodent particles. It was observed that coating with nano-WC grains exhibited higher erosion resistance compared to conventional coating.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available