4.6 Review

A deep profiler's guide to cytometry

Journal

TRENDS IN IMMUNOLOGY
Volume 33, Issue 7, Pages 323-332

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.it.2012.02.010

Keywords

fluorescence; inductively coupled plasma mass spectrometry; single cell analysis; immunophenotyping; data analysis

Categories

Funding

  1. Intramural Research Program of the NIAID, NIH
  2. Collaboration for AIDS Vaccine Discovery (CAVD), from the Bill and Melinda Gates Foundation [OPP1032325]
  3. Damon Runyon Cancer Research Foundation Fellowship [DRG-2017-09]
  4. Rachford and Carlota A. Harris Endowed Professorship
  5. European Commission [HEALTH.2010.1.2-1]
  6. Bill and Melinda Gates Foundation [GF12141-137101]
  7. [U19 AI057229]
  8. [P01 CA034233]
  9. [HHSN272200700038C]
  10. [1R01CA130826]
  11. [CIRM DR1-01477]
  12. [RB2-01592]
  13. [NCI RFA CA 09-011]
  14. [NHLBI-HV-10-05(2)]

Ask authors/readers for more resources

In recent years, advances in technology have provided us with tools to quantify the expression of multiple genes in individual cells. The ability to measure simultaneously multiple genes in the same cell is necessary to resolve the great diversity of cell subsets, as well as to define their function in the host. Fluorescence-based flow cytometry is the benchmark for this; with it, we can quantify 18 proteins per cell, at >10 000 cells/s. Mass cytometry is a new technology that promises to extend these capabilities significantly. Immunophenotyping by mass spectrometry provides the ability to measure >36 proteins at a rate of 1000 cells/s. We review these cytometric technologies, capable of high-content, high-throughput single-cell assays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available