4.6 Review

A permissive geometry model for TCR-CD3 activation

Journal

TRENDS IN BIOCHEMICAL SCIENCES
Volume 33, Issue 2, Pages 51-57

Publisher

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tibs.2007.10.008

Keywords

-

Ask authors/readers for more resources

The T cell antigen receptor (TCR-CD3) is the most complex receptor known to date, consisting of eight transmembrane subunits. Its activation by an antigen is the initial step in an immune response. Here, we present the permissive geometry model explaining how antigen binding initiates intracellular signalling cascades. We propose that a dimeric antigen imposes its geometry on two TCR-CD3 receptors by simultaneously binding to both. This causes the TCR alpha beta subunits to rotate with respect to each other leading to displacement of the ectodomains of the associated CD3 dimers. This results in a scissor-like movement of the CD3 dimers that opens the cytoplasmic tails for interaction with signalling proteins, thus initiating signalling cascades.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available