4.7 Article

Utilization of lightflecks by seedlings of five dominant tree species of different subtropical forest successional stages under low-light growth conditions

Journal

TREE PHYSIOLOGY
Volume 32, Issue 5, Pages 545-553

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tps043

Keywords

dynamic photosynthesis simulation; photosynthetic capacity; respiration rate; stomatal conductance

Categories

Funding

  1. National Natural Science Foundation of China [30870385]
  2. National Basic Research Program of China (973 Program) [2009CB118504]

Ask authors/readers for more resources

We selected five typical tree species, including one early-successional species (ES) Pinus massoniana Lamb., two mid-successional species (MS) Schima superba Gardn. et Champ. and Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils. and two late-successional species (LS) Cryptocarya concinna Hance. and Acmena acuminatissima (BI.) Merr et Perry., which represent the plants at three successional periods in Dinghushan subtropical forest succession of southern China. Potted seedlings of the five species were grown under 12% of full sunlight for 36 months. The ES and MS showed the slowest and fastest responses to lightflecks, respectively, which correlated with the rate of stomatal opening. In contrast to P. massoniana and C. concinna, the other three species exhibited a high induction loss. Early-successional species showed the lowest specific leaf area and chlorophyll content, the highest photosynthetic capacity (A(max)) and respiratory carbon losses (R-d). Compared with ES and MS, LS showed lower A(max) and R-d. The five tree species showed a similar chlorophyll a/b ratio after long-term low-light adaptations. On the other hand, LS had a relatively higher de-epoxidation state to protect themselves from excess light during lightflecks. Our results indicated that (i) slower responses to lightflecks could partially explain why ES species could not achieve seedling regeneration in low-light conditions; (ii) fast responses to lightflecks could partially explain why MS species could achieve seedling regeneration in low-light conditions; and (iii) smaller respiratory carbon losses might confer on the LS species a competitive advantage in low-light conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available