4.7 Review

Global climate change and tree nutrition: influence of water availability

Journal

TREE PHYSIOLOGY
Volume 30, Issue 9, Pages 1221-1234

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tpq055

Keywords

drought; global climate change; nutrient uptake; tree nutrition; waterlogging

Categories

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [GE 1090/5-1, 7-1]

Ask authors/readers for more resources

The effects of global climate change will regionally be very different, mainly causing considerable changes in temperature and water availability. For Central Europe, for example, increased temperatures are predicted, which will cause increased frequencies and durations of summer drought events. On the other hand, the predicted changes in precipitation patterns will lead to enhanced rainfall during winter and spring, thereby increasing the risk of flooding in Central and Northern Europe. Depending on the sensitivity to reduced water availability on the one hand and oxygen depletion due to waterlogging on the other, physiological performance, growth and competitive ability of trees may be adversely affected. Both drought and excess water availability impair the mineral nutrition of trees by influencing on the one hand the nutrient availability in the soil and on the other hand the physiology of the uptake systems mainly of the mycorrhizal tree roots. Extreme water regimes also change interaction patterns among plants and between plants and microorganisms, and alter the carbon balance of trees and ecosystems. Here we summarize and discuss the present knowledge on tree nutrition under altered water availability as expected to be more common in the future. The focus is on tree mineral nutrient uptake and metabolism as well as on the interaction between carbon allocation and the mineral nutrient balance as affected by reduced and excess water availability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available