4.7 Article

Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange

Journal

TREE PHYSIOLOGY
Volume 29, Issue 5, Pages 697-705

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tpp005

Keywords

hydraulic lift; mangrove; sap flow; water relations

Categories

Funding

  1. National Science Foundation (USA) [DEB-0542912]

Ask authors/readers for more resources

Rhizophora mangle L. trees of Biscayne National Park (Florida, USA) have two distinct growth forms: tall trees (5-10 m) growing along the coast and dwarf trees (1 m or less) growing in the adjacent inland zone. Sharp decreases in salinity and thus increases in soil water potential from Surface soil to about a depth of I in were found at the dwarf mangrove site but not at the tall mangrove site. Consistent with our prediction, hydraulic redistribution detected by reverse sap flow in shallow prop roots was observed during nighttime, early morning and late afternoon in dwarf trees, but not In tall trees. In addition, hydraulic redistribution was observed throughout the 24-h period during a low temperature spell. Dwarf trees had significantly lower sapwood-specific hydraulic conductivity, smaller stein vessel diameter, lower leaf area to sapwood area ratio (LA/SA), smaller leaf size and higher leaf mass per area. Leaves of dwarf trees had lower CO2 assimilation rate and lower stomatal conductance compared to tall trees. Leaf water potentials at midday were more negative in tall trees that are consistent with their substantially higher stomatal conductance and LA/SA. The substantially lower water transport efficiency and the more conservative water use of dwarf trees may be due to a combination of factors such as high salinity in the surface soil, particularly during dry periods, and Substantial reverse sap flow in shallow roots that make upper soil layers with high salinity a competing sink of water to the transpiring leaves. There may also be a benefit for the dwarf trees in having hydraulic redistribution because the reverse flow and the release of water to upper soil layers should lead to dilution of the high salinity in the rhizosphere and thus relieve its potential harm to dwarf R. mangle trees.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available