4.5 Article

Association mapping for wood quality and growth traits in Eucalyptus globulus ssp globulus Labill identifies nine stable marker-trait associations for seven traits

Journal

TREE GENETICS & GENOMES
Volume 10, Issue 6, Pages 1661-1678

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11295-014-0787-0

Keywords

Eucalyptus globulus; Association mapping; Wood quality; Candidate genes; SNP

Funding

  1. CRC for Forestry

Ask authors/readers for more resources

The moderate to high levels of nucleotide diversity and low linkage disequilibrium found in many forest tree species make them ideal candidates for association mapping. Here, we report candidate gene-based association mapping results for complex wood quality and growth traits in Eucalyptus globulus Labill. ssp. globulus, the most widely grown eucalypt in temperate regions of the world. Ninety-eight single nucleotide polymorphisms (SNPs) from 20 wood quality candidate genes were assayed in a discovery population consisting of 385 trees sourced from a provenance-progeny trial. Twenty-five selected SNPs with significant associations (P<0.05) in the discovery population were assayed for validation in 296 trees sourced from an independent second-generation breeding trial. To account for background genetic structure, mixed models were used in the association analyses. Two associations identified in the discovery population were independently supported in the validation testing. However, combining the discovery and validation results in a combined analysis, we discovered nine stable marker-trait associations for seven traits. These associations link underlying complex wood and growth phenotypes to earlier putative selection signatures opening new avenues to accelerate the dissection of these traits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available