4.7 Article

Speed-based toll design for cordon-based congestion pricing scheme

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trc.2013.02.012

Keywords

Cordon-based congestion pricing; Stochastic user equilibrium; Elastic demand; Continuous value-of-time; Distributed genetic algorithm

Ask authors/readers for more resources

The cordon-based Electronic Road Pricing (ERP) system in Singapore adopts the average travel speed as an index for evaluating the traffic congestion within a cordon area, and the maintenance of the average travel speed within a satisfactory range is taken as the objective of the toll adjustment. To formulate this practical speed-based toll design problem, this paper proposes a mathematical programming with equilibrium constraint (MPEC) model with the objective of maintaining the traffic condition in the cordon area. In the model, the network users' route choice behavior is assumed to follow probit-based stochastic user equilibrium with elastic demand, asymmetric link travel time functions and continuous value-of-time. A distributed revised genetic algorithm is designed for solving the MPEC model. Finally, a network example based on the ERP system is adopted to numerically validate the proposed models and algorithms, and further indicates that the computation speed can be improved greatly by using a distributed computing system. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available