4.6 Article

Sensing the Pulse of Urban Refueling Behavior: A Perspective from Taxi Mobility

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2644828

Keywords

Design; Implementation Algorithms; Experimentation; Performance; Refueling event; spatial-temporal unit; expected duration; arrival rate

Ask authors/readers for more resources

Urban transportation is an important factor in energy consumption and pollution, and is of increasing concern due to its complexity and economic significance. Its importance will only increase as urbanization continues around the world. In this article, we explore drivers' refueling behavior in urban areas. Compared to questionnaire-based methods of the past, we propose a complete data-driven system that pushes towards real-time sensing of individual refueling behavior and citywide petrol consumption. Our system provides the following: detection of individual refueling events (REs) from which refueling preference can be analyzed; estimates of gas station wait times from which recommendations can be made; an indication of overall fuel demand from which macroscale economic decisions can be made, and a spatial, temporal, and economic view of urban refueling characteristics. For individual behavior, we use reported trajectories from a fleet of GPS-equipped taxicabs to detect gas station visits. For time spent estimates, to solve the sparsity issue along time and stations, we propose context-aware tensor factorization (CATF), a factorization model that considers a variety of contextual factors (e.g., price, brand, and weather condition) that affect consumers' refueling decision. For fuel demand estimates, we apply a queue model to calculate the overall visits based on the time spent inside the station. We evaluated our system on large-scale and real-world datasets, which contain 4-month trajectories of 32,476 taxicabs, 689 gas stations, and the self-reported refueling details of 8,326 online users. The results show that our system can determine REs with an accuracy of more than 90%, estimate time spent with less than 2 minutes of error, and measure overall visits in the same order of magnitude with the records in the field study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available