4.4 Article

Effects of Mineral Dissolution Ratios on Chemical-Dissolution Front Instability in Fluid-Saturated Porous Media

Journal

TRANSPORT IN POROUS MEDIA
Volume 82, Issue 2, Pages 317-335

Publisher

SPRINGER
DOI: 10.1007/s11242-009-9427-9

Keywords

Chemical-dissolution; Front instability; Mineral dissolution ratio; Theoretical solution; Computational simulation; Porous media

Ask authors/readers for more resources

The main purpose of this article is to investigate, both theoretically and computationally, the effects of mineral dissolution ratios on the different respects of chemical-dissolution front instability problems in fluid-saturated porous media. In order to get a better understanding of how the mineral dissolution ratio affects the propagation and evolution of a planar chemical-dissolution front in an infinite space consisting of a fluid-saturated porous medium, the theoretical analysis method is used to derive the generous solution to the propagation speed of the planar chemical-dissolution front, while the computational simulation method is employed to simulate the detailed evolution process when the planar chemical-dissolution front is evolved into complicated morphologies at the supercritical Zhao numbers. The related theoretical results reveal that the mineral dissolution ratio plays an important role in controlling the propagation speed of a planar chemical-dissolution front in the fluid-saturated porous medium. An increase in the value of the mineral dissolution ratio can result in a remarkable decrease in the value of the propagation speed of a planar chemical-dissolution front. On the other hand, the related computational simulation results demonstrate that the mineral dissolution ratio has a considerable influence on the evolution pattern of a planar chemical-dissolution front during its propagation in the fluid-saturated porous medium. An increase in the mineral dissolution ratio can reduce the likelihood for a planar chemical-dissolution front to evolve from the initial planar shape into different morphologies within the fluid-saturated porous medium of finite size.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available