4.5 Article

Improving allogeneic islet transplantation by suppressing Th17 and enhancing Treg with histone deacetylase inhibitors

Journal

TRANSPLANT INTERNATIONAL
Volume 27, Issue 4, Pages 408-415

Publisher

WILEY
DOI: 10.1111/tri.12265

Keywords

islet transplantation; T helper 17 cell; donor-specific transfusion; regulatory T cell; histone deacetylase inhibitor

Funding

  1. Japan IDDM network
  2. All Saints Health Foundation
  3. Grants-in-Aid for Scientific Research [23390324] Funding Source: KAKEN

Ask authors/readers for more resources

Islet transplantation is a new treatment for achieving insulin independence for patients with severe diabetes. However, major drawbacks of this treatment are the long graft survival, the necessity for immunosuppressive drugs, and the efficacy of transplantation. Donor-specific transfusion (DST) has been shown to reduce rejection after organ transplantation, potentially through enhanced regulatory T-cell (Treg) activity. However, recent findings have shown that activated Treg can be converted into Th17 cells. We focused on histone deacetylase inhibitors (HDACi) because it was reported that inhibition of HDAC activity prevented Treg differentiation into IL17-producing cells. We therefore sought to enhance Treg while suppressing Th17 cells using DST with HDACi to prolong graft survival. To stimulate Treg by DST, we used donor splenocytes. In DST with HDACi group, Foxp3 mRNA expression and Treg population increased in the thymus and spleen, whereas Th17 population decreased. qPCR analysis of lymphocyte mRNA indicated that Foxp3, IL-10, and TGF-b expression increased. However, interleukin 17a, Stat3 (Th17), and IFN-g expression decreased in DST+HDACi group, relative to DST alone. Moreover, DST treated with HDACi prolonged graft survival relative to controls in mice islet transplantation. DST with HDACi may therefore have utility in islet transplantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available