4.7 Article

Erythromycin prevents the pulmonary inflammation induced by exposure to cigarette smoke

Journal

TRANSLATIONAL RESEARCH
Volume 158, Issue 1, Pages 30-37

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.trsl.2011.03.001

Keywords

-

Funding

  1. Grants-in-Aid for Scientific Research [23590518] Funding Source: KAKEN

Ask authors/readers for more resources

The effect of erythromycin on the inflammation caused by exposure to cigarette smoke was investigated in this study. Mice were exposed either to cigarette smoke or to environmental air (control), and some mice exposed to cigarette smoke were treated with oral erythromycin (100 mg/kg/day for 8 days). Pulmonary inflammation was assessed by determining the cellular content of bronchoalveolar lavage (BAL) fluid. The messenger RNA (mRNA) levels of various mediators, including keratinocyte-derived chemokine (KC), macrophage inflammatory protein (MIP)-2, surfactant protein (SP)-D, granulocyte macrophage colony-stimulating factor (GMCSF), tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 in lung tissue were determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. The exposure to cigarette smoke increased significantly the numbers of neutrophils (P = 0.029), macrophages (P = 0.029), and lymphocytes (P = 0.029) recovered in BAL fluid. Moreover, mRNA levels of KC (P = 0.029), MIP-2 (P = 0.029), SP-D (P = 0.029), and GM-CSF (P = 0.057) in the lung tissue were higher in mice exposed to cigarette smoke than in mice exposed to environmental air. In the erythromycin-treated mice that were exposed also to cigarette smoke, both neutrophil and lymphocyte counts were significantly lower in the BAL fluid than those in the vehicle-treated mice (P = 0.029). Erythromycin-treated mice exposed to cigarette smoke showed a trend of lower mRNA levels of KC and TNF-alpha in the lung tissue than those in the vehicle-treated mice, although the statistical significance was not achieved (P = 0.057). Our data demonstrated that erythromycin prevented lung inflammation induced by cigarette smoke, in parallel to the reduced mRNA levels of KC and TNF-alpha. (Translational Research 2011;158:30-37)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available