4.2 Article

Genetic transformation of the sugar beet plastome

Journal

TRANSGENIC RESEARCH
Volume 18, Issue 1, Pages 17-30

Publisher

SPRINGER
DOI: 10.1007/s11248-008-9193-4

Keywords

Aminoglicoside 3 '-adenylyltransferase (aadA); Biolistic apparatus; Chloroplast DNA transformation; Green fluorescent protein; Spectinomycin; Shoot regeneration

Funding

  1. Institute of Plant Genetic, Research Division of Perugia [130]
  2. European Framework VI Specific Target Research Project

Ask authors/readers for more resources

It is very important for the application of chloroplast engineering to extend the range of species in which this technology can be achieved. Here, we describe the development of a chloroplast transformation system for the sugar beet (Beta vulgaris L. ssp. vulgaris, Sugar Beet Group) by biolistic bombardment of leaf petioles. Homoplasmic plastid-transformed plants of breeding line Z025 were obtained. Transformation was achieved using a vector that targets genes to the rrn16/rps12 intergenic region of the sugar beet plastome, employing the aadA gene as a selectable marker against spectinomycin and the gfp gene for visual screening of plastid transformants. gfp gene transcription and protein expression were shown in transplastomic plants. Detection of GFP in Comassie blue-stained gels suggested high GFP levels. Microscopy revealed GFP fluorescence within the chloroplasts. Our results demonstrate the feasibility of engineering the sugar beet chloroplast genome; this technology provides new opportunities for the genetic improvement of this crop and for social acceptance of genetically modified sugar beet plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available