4.7 Article

A New Global Climatology of Annual Land Surface Temperature

Journal

REMOTE SENSING
Volume 7, Issue 3, Pages 2850-2870

Publisher

MDPI
DOI: 10.3390/rs70302850

Keywords

-

Funding

  1. Cluster of Excellence CliSAP, University of Hamburg through German Science Foundation (DFG) [EXC 177]

Ask authors/readers for more resources

Land surface temperature (LST) is an important parameter in various fields including hydrology, climatology, and geophysics. Its derivation by thermal infrared remote sensing has long tradition but despite substantial progress there remain limited data availability and challenges like emissivity estimation, atmospheric correction, and cloud contamination. The annual temperature cycle (ATC) is a promising approach to ease some of them. The basic idea to fit a model to the ATC and derive annual cycle parameters (ACP) has been proposed before but so far not been tested on larger scale. In this study, a new global climatology of annual LST based on daily 1 km MODIS/Terra observations was processed and evaluated. The derived global parameters were robust and free of missing data due to clouds. They allow estimating LST patterns under largely cloud-free conditions at different scales for every day of year and further deliver a measure for its accuracy respectively variability. The parameters generally showed low redundancy and mostly reflected real surface conditions. Important influencing factors included climate, land cover, vegetation phenology, anthropogenic effects, and geology which enable numerous potential applications. The datasets will be available at the CliSAP Integrated Climate Data Center pending additional processing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available