4.7 Article

Early Water Stress Detection Using Leaf-Level Measurements of Chlorophyll Fluorescence and Temperature Data

Journal

REMOTE SENSING
Volume 7, Issue 3, Pages 3232-3249

Publisher

MDPI AG
DOI: 10.3390/rs70303232

Keywords

-

Funding

  1. National Basic Research Program of China [2013CB733406]
  2. Fundamental Research Funds for the Central Universities
  3. China Scholarship Council

Ask authors/readers for more resources

The purpose of this paper was to investigate the early water stress in maize using leaf-level measurements of chlorophyll fluorescence and temperature. In this study, a series of diurnal measurements, such as leaf chlorophyll fluorescence (Fs), leaf spectrum, temperature and photosynthetically active radiation (PAR), were conducted for maize during gradient watering and filled watering experiments. Fraunhofer Line Discriminator methods (FLD and 3FLD) were used to obtain fluorescence from leaves spectrum. This simulated work using the SCOPE model demonstrated the variations in fluorescence and temperature in stress levels expressed by different stress factors. In the field measurement, the gradient experiment revealed that chlorophyll fluorescence decreased for plants with water stress relative to well-water plants and T-leaf-T-air increased; the filled watering experiment stated that chlorophyll fluorescence of maize under water stress were similar to those of maize under well-watering condition. In addition, the relationships between the Fs, retrieved fluorescence, T-leaf-T-air and water content were analyzed. The Fs determination resulted to the best coefficients of determination for the normalized retrieved fluorescence FLD/PAR (R-2 = 0.54), T-leaf-T-air (R-2 = 0.48) and water content (R-2 = 0.71). The normalized retrieved fluorescence yielded a good coefficient of determination for T-leaf-T-air (R-2 = 0.48). This study demonstrated that chlorophyll fluorescence could reflect variations in the physiological states of plants during early water stress, and leaf temperature confirmed the chlorophyll fluorescence analysis results and improved the accuracy of the water stress detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available