4.7 Article

Mechanical properties of porous titanium with different distributions of pore size

Journal

TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
Volume 23, Issue 8, Pages 2317-2322

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S1003-6326(13)62735-1

Keywords

porous Ti; pore size distributions; mechanical properties; density exponent; biomaterials

Funding

  1. National Basic Research Program of China [2012CB619101]

Ask authors/readers for more resources

To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties of the porous Ti were explored via room temperature compressive tests. The pore sizes and shapes are uniform throughout the specimens with porosities ranging from 36% to 63%. The compression strength and the elastic modulus are in the range from 94.05 to 468.57 MPa and 2.662 to 18 GPa, respectively. It is worth noting that the relationship between the compressive strength and the porosities is completely linear relation beyond the effect of pore size distributions on the mechanical properties. The value of the constant C achieved from the Gibson-Ashby model suggests that the pore sizes affect the yield strength of the porous Ti and the values of density exponent (n) for porous Ti with two different pore sizes are higher than 2, which suggests that the deformation mode of the porous Ti with a porosity ranging from 36% to 63% is mainly buckling of the cell struts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available