4.7 Article

The Immune Adaptor ADAP Regulates Reciprocal TGF-β1-Integrin Crosstalk to Protect from Influenza Virus Infection

Journal

PLOS PATHOGENS
Volume 11, Issue 4, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1004824

Keywords

-

Funding

  1. Ministry of Science and Technology of China [2012CB910800]
  2. National Natural Science Foundation of China [31422018, 31070778, 31370859]
  3. WIV One-Three-Five Strategic Programs
  4. Shanghai Pujiang program [11PJ1410700]
  5. Hundred Talents Program of the Chinese Academy of Sciences

Ask authors/readers for more resources

Highly pathogenic avian influenza virus (HPAI, such as H5N1) infection causes severe cytokine storm and fatal respiratory immunopathogenesis in human and animal. Although TGF-beta 1 and the integrin CD103 in CD8(+) T cells play protective roles in H5N1 virus infection, it is not fully understood which key signaling proteins control the TGF-beta 1-integrin crosstalk in CD8(+) T cells to protect from H5N1 virus infection. This study showed that ADAP (Adhesion and Degranulation-promoting Adapter Protein) formed a complex with TRAF6 and TAK1 in CD8(+) T cells, and activated SMAD3 to increase autocrine TGF-beta 1 production. Further, TGF-beta 1 induced CD103 expression via an ADAP-, TRAF6- and SMAD3-dependent manner. In response to influenza virus infection (i.e. H5N1 or H1N1), lung infiltrating ADAP(-/-)CD8(+) T cells significantly reduced the expression levels of TGF-beta 1, CD103 and VLA-1. ADAP(-/-) mice as well as Rag1(-/-) mice receiving ADAP(-/-) T cells enhanced mortality with significant higher levels of inflammatory cytokines and chemokines in lungs. Together, we have demonstrated that ADAP regulates the positive feedback loop of TGF-beta 1 production and TGF-beta 1-induced CD103 expression in CD8(+) T cells via the T beta RI-TRAF6-TAK1-SMAD3 pathway and protects from influenza virus infection. It is critical to further explore whether the SNP polymorphisms located in human ADAP gene are associated with disease susceptibility in response to influenza virus infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available