4.4 Article

Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway

Journal

TRAFFIC
Volume 9, Issue 10, Pages 1728-1742

Publisher

WILEY
DOI: 10.1111/j.1600-0854.2008.00796.x

Keywords

budding and egress; exosome; final envelopment; HHV-6; MVB; TGN

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan

Ask authors/readers for more resources

The final envelopment of most herpesviruses occurs at Golgi or post-Golgi compartments, such as the trans Golgi network (TGN); however, the final envelopment site of human herpesvirus 6 (HHV-6) is uncertain. In this study, we found novel pathways for HHV-6 assembly and release from T cells that differed, in part, from those of alphaherpesviruses. Electron microscopy showed that late in infection, HHV-6-infected cells were larger than uninfected cells and contained many newly formed multivesicular body (MVB)-like compartments that included small vesicles. These MVBs surrounded the Golgi apparatus. Mature virions were found in the MVBs and MVB fusion with plasma membrane, and the release of mature virions together with small vesicles was observed at the cell surface. Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB/late endosome marker, and HHV-6 envelope glycoproteins. The viral glycoproteins also localized to internal vesicles in the MVBs and to secreted vesicles (exosomes). Furthermore, we found virus budding at TGN-associated membranes, which expressed CD63, adaptor protein (AP-1) and TGN46, and CD63 incorporation into virions. Our findings suggest that mature HHV-6 virions are released together with internal vesicles through MVBs by the cellular exosomal pathway. This scenario has significant implications for understanding HHV-6's maturation pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available