4.4 Article

Enzymatic properties of venoms from Brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms

Journal

TOXICON
Volume 69, Issue -, Pages 180-190

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.toxicon.2013.02.012

Keywords

Scorpion venom; Tityus spp.; Metalloproteinases; Dynorphin 1-13; Leu-enkephalin; Antivenoms

Funding

  1. CNPq
  2. FAPESP
  3. INCTTox
  4. Fundacao Araucaria

Ask authors/readers for more resources

Tityus scorpion stings are an important public health problem in Brazil, where the incidence of such stings exceeds the incidence of the health problems caused by other venomous animals, including snakes. In this study, we have analysed specific enzymatic activities of the venom from the Brazilian scorpions of Tityus genus, i.e., Tityus serrulatus, Tityus bahiensis and Tityus stigmurus. The data presented here revealed that Tityus spp. venoms exhibited significant hyaluronidase activity but no phospholipase activity. All the venom samples exhibited the ability to hydrolyse Abz-FLRRV-EDDnp and dynorphin 1-13 substrates. These activities were inhibited by 1,10-phenanthroline but not by PMSF, indicating the presence of metalloproteinases in the Tityus spp. venoms. The venom peptidase activity on Abz-FLRRV-EDDnp and on dynorphin 1-13 was partially inhibited by therapeutic Brazilian anti-scorpion and anti-arachnidic antivenoms. Dynorphin 1-13 (YGGFLR-RIRPKLK) contains two scissile bonds between the residues Leu-Arg and Arg-Arg that are susceptible to cleavage by the Tityus venom metallopeptidase(s). Their cleavage releases leu-enkephalin, an important bioactive peptide. The detection of metalloproteinase(s) with specificity for both dynorphin 1-13 degradation and leu-enkephalin releasing can be important for the mechanistic understanding of hypotension and bradycardia induction in cases of scorpion stings, whereas hyaluronidases might contribute to the diffusion of the toxins present in these venoms. Furthermore, the limited inhibition of the toxic enzymatic activities by commercial antivenoms illustrates the necessity of improvements in current antivenom preparation. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available