4.2 Review

Oxidative stress and cardiac hypertrophy: a review

Journal

TOXICOLOGY MECHANISMS AND METHODS
Volume 22, Issue 5, Pages 359-366

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/15376516.2012.666650

Keywords

Reactive oxygen species; NADPH-oxidase; antioxidants

Categories

Ask authors/readers for more resources

Cardiac hypertrophy (CH) is an adaptive response of the heart to pressure overload. It is a common pathological feature in the natural course of some major cardiovascular diseases, like, hypertension and myocardial infarction. Cardiac hypertrophy is strongly associated with an increased risk of heart failure and sudden cardiac death. The complex and dynamic pathophysiological mechanisms of CH has been the focus of intense scientific investigation, in an effort to design preventive and curative strategies. Oxidative stress has been identified as one of the key contributing factors in the development of cardiac hypertrophy. In this review, evidences supporting the oxidative stress as a cause of cardiac hypertrophy with emphasis on mitochondrial oxidative stress and possible options for pharmacological interventions have been discussed. Reactive oxygen species (ROS) also activate a broad variety of hypertrophy signaling kinases and transcription factors, like, MAP kinase, NF K-B, etc. In addition to profound alteration of cellular function, ROS modulate the extracellular matrix function, evidenced by increased interstitial and perivascular fibrosis. Translocator protein (TSPO) present in the outer mitochondrial membrane is known to be involved in oxidative stress and cardiovascular pathology. Recently, its role in cardiac hypertrophy has been reported by us. All these evidences strongly provide support to beneficial role of drugs which selectively interfere with the generation of free radicals or augment endogenous antioxidants in cardiac hypertrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available