4.5 Article

Aryl hydrocarbon receptor activation by benzo(a)pyrene inhibits proliferation of myeloid precursor cells and alters the differentiation state as well as the functional phenotype of murine bone marrow-derived macrophages

Journal

TOXICOLOGY LETTERS
Volume 296, Issue -, Pages 106-113

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2018.07.050

Keywords

Aryl hydrocarbon receptor (AhR); Benzo(a)pyrene (BaP); Macrophage; Differentiation

Categories

Funding

  1. German Federal Institute for Risk Assessment, Berlin [FK 3-1329-432]
  2. Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V., Munich

Ask authors/readers for more resources

Intensive research during the past decade has highlighted the impact of the regulatory function of the aryl hydrocarbon receptor (AhR) in immunity. In this study, we focused on the influence of AhR activation on the differentiation of murine bone marrow-derived myeloid precursor cells into mature macrophages. Our results show that the activation of AhR by subtoxic doses of the AhR ligand benzo(a)pyrene (BaP) impaired the proliferation of bone marrow cells (BMCs) whereas the proportion of resulting adherent cells was not affected. Flow cytometric analysis revealed that the number of mature bone marrow-derived macrophages (BMMs) was significantly decreased by AhR activation. However, expression of the murine macrophage marker F4/80, the major histocompatibility complex class II (MHC-II) and the Fc gamma receptor I (Fc gamma RI/CD64) were upregulated on BaP-exposed BMMs in an AhR-dependent manner. Analysis of cytokine secretion after BMM activation with heat-killed (hk) salmonellae showed that BaP exposure resulted in suppressed secretion of interleukin (IL)-1 ss, IL-6 and the chemokine CXC motif ligand 1 (CXCL1). In contrast, the release of tumor necrosis factor (TNF)-alpha and IL-10 was increased following BaP exposure. In addition, the production of antimicrobial nitric oxide (NO) was increased AhR-dependently. Bacterial stimulation of BaP exposed BMMs also induced the expression of MHC-II and CD64, while the expression of F4/80 was dramatically decreased. In summary, this study demonstrates for the first time that sustained exposure over 6 days of bone marrow-derived myeloid precursors to subtoxic doses of BaP critically interferes with differentiation and activation of BMMs. We could convincingly show that AhR-induced gene regulation is crucial for homeostasis of pro- and anti-inflammatory cytokines during macrophage activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available