4.5 Article

Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells

Journal

TOXICOLOGY LETTERS
Volume 226, Issue 3, Pages 264-276

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2014.02.014

Keywords

Caco-2; Uptake mechanism; Endocytosis; Electrolyte homeostasis; Titanium dioxide nanoparticles

Categories

Ask authors/readers for more resources

The gastrointestinal uptake of different crystal structures of TiO2 was investigated using Caco-2 intestinal cells. Caco-2 monolayers exhibited time-dependent, saturable uptake of Ti from TiO2 exposures of 1 mgl(-1) over 24h, which was influenced by crystal type. Initial uptake rates were 5.3, 3.73, 3.58 and 4.48 nmol mg(-1) protein h(-1) for bulk, P25, anatase and rutile forms respectively. All exposures caused elevations of Ti in the cells relative to the control (ANOVA P<0.05). Electron micrographs of the Caco-2 monolayer showed the presence of particles inside the cells, and energy dispersive spectroscopy (EDS) confirmed the composition as TiO2. Incubating the cells with 120 IU nystatin (putative endocytosis inhibitor) or 100 mu moll(-1) vanadate (ATPase inhibitor) caused large increases in Ti accumulation for all crystal types relative to controls (ANOVA P<0.05), except for the rutile form with vanadate. Incubating the cells with 90 mu moll(-1) genistein (tyrosine kinase inhibitor) or 27 mu moll(-1) chloropromazine (clathrin-mediated endocytosis inhibitor) caused a large decrease in Ti accumulation relative to the controls (ANOVA P<0.05). Cell viability measures were generally good (low LDH leak, normal cell morphology), but there were some changes in the electrolyte composition (K+, Na+, Ca2+, Mg2+) of exposed cells relative to controls. A rise in total Ca2+ concentration in the cells was observed for all TiO2 crystal type exposures. Overall, the data shows that Ti accumulation for TiO2 NP exposure in Caco-2 cells is crystal structure-dependent, and that the mechanism(s) involves endocytosis of intact particles. (C) 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.olg/licenses/by-nc-nd/3.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available