4.5 Article

Acute inhalation toxicity of cerium oxide nanoparticles in rats

Journal

TOXICOLOGY LETTERS
Volume 205, Issue 2, Pages 105-115

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2011.05.1027

Keywords

Cerium oxide nanoparticle; Inhalation exposure; Cytotoxicity; Oxidative stress; Inflammation

Categories

Funding

  1. IIBAT management

Ask authors/readers for more resources

The aim of the present study was to assess the acute toxic potential of cerium oxide nanoparticles (CeO2 NPs) in rats when exposed through the head and nose inhalation route. The rats were exposed to CeO2 NPs and the resultant effects if any, to cause cytotoxicity, oxidative stress and inflammation in the lungs were evaluated on a 24 h, 48 h and 14 day post exposure period. Our results showed a significant decrease in the cell viability, with the increase of lactate dehydogenase, total protein and alkaline phosphatase levels in the bronchoalveolar lavage fluid (BALF) of the exposed rats. Total leukocyte count and the percentage of neutrophils in BALF were elevated within 24 h of post exposure. The concentrations of pro-inflammatory cytokines (IL-1 beta, TNF-alpha, and IL-6) were significantly increased in the BALF and in the blood throughout the observation period. The level of malondialdehyde was elevated with the decreased levels of intracellular reduced glutathione (GSH) in the lung after exposure. The alveolar macrophages (AMs) and neutrophils overloaded with phagocytosed CeO2 NPs were observed along with non-phagocytosed free CeO2 NPs that were deposited over the epithelial surfaces of the bronchi, bronchiole and alveolar regions of lungs within 24 h of post exposure and were consistent throughout the observation period. A well distributed, multifocal pulmonary microgranulomas due to impairment of clearance mechanism leading to biopersistence of CeO2 NPs for an extended period of time were observed at the end of the 14 day post exposure period. These results suggest that acute exposure of CeO2 NPs through inhalation route may induce cytotoxicity via oxidative stress and may lead to a chronic inflammatory response. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available