4.5 Article

Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells

Journal

TOXICOLOGY IN VITRO
Volume 27, Issue 2, Pages 954-963

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tiv.2013.01.016

Keywords

DCFH-DA; Hepatocytes; In vitro assays; Nanoparticles

Categories

Funding

  1. European Community [2007-201335]

Ask authors/readers for more resources

No consensus exists on how to address possible toxicity of nanomaterials as they interfere with most in vitro screening tests based on colorimetric and fluorimetric probes such as the dichloro-dihydrofluorescein diacetate (DCFH-DA) assay for detection of oxidative species. In the present research, nanomaterial interaction with DCFH-DA was studied in relation to its nature and/or assay conditions (cell-based and time exposure) by incubating Rhodamine (Rhd)-labeled 25 nm and 50 nm silica (SiO2), naked and oleic acid coated magnetite, (Fe3O4) and maghemite (Fe2O3) iron oxide, titanium dioxide (TiO2) and poly(ethylene oxide)-poly(lactide/glycolide) acid (PLGA-PEO) nanoparticles (NPs) with metabolically active rat hepatocytes for 4 and 24-h periods. Data indicated that nanoparticle uptake correlated with quenching of dye fluorescence emission. In spite of their masking effect, the oxidative potential of NPs could be detected at a limited threshold concentration when exposed for periods of time longer than those frequently used for this test. However, changes in the experimental conditions did not systematically result in free radical formation for all nanomaterials tested. Overall data indicate that despite the quenching effect of nanoparticles on DCFH-DA assay, it can be considered as a useful tool for quantitative measurement of NPs-induced oxidative stress by minor modifications of standardized protocols. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available