4.5 Article

Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells

Journal

TOXICOLOGY IN VITRO
Volume 23, Issue 6, Pages 1076-1084

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tiv.2009.06.001

Keywords

Ag; Ag+ ions; Deionization; HepG2 cells; Nanoparticles; Oxidative stress; Toxicity

Categories

Funding

  1. Korea Ministry of the Environment

Ask authors/readers for more resources

Cytotoxicity induced by silver nanoparticles (AgNPs) and the role that oxidative stress plays in this process were demonstrated in human hepatoma cells. Toxicity induced by silver (Ag+) ions was studied in parallel using AgNO3 as the Ag+ ion source. Using cation exchange treatment, we confirmed that the AgNP solution contained a negligible amount of free Ag+ ions. Metal-responsive metallothionein 1b (MT1b) mRNA expression was not induced in AgNP-treated cells, while it was induced in AgNO3-treated cells. These results indicate that AgNP-treated cells have limited exposure to Ag+ ions, despite the potential release of Ag+ ions from AgNPs in cell culture. AgNPs agglomerated in the cytoplasm and nuclei of treated cells, and induced intracellular oxidative stress. AgNPs exhibited cytotoxicity with a potency comparable to that of Ag+ ions in in vitro cytotoxicity assays. However cells, the toxicity of AgNPs was prevented by use of the antioxidant N-acetylcysteine, and AgNP-induced DNA damage was also prevented by N-acetylcysteine. AgNO3 treatment induced oxidative stress-related glutathione peroxidase 1 (GPx1) and catalase expression to a greater extent than AgNP exposure, but treatment with AgNO3 and AgNPs induced comparable superoxide dismutase 1 (SOD1) expression levels. Our findings suggest that AgNP cytotoxicity is primarily the result of oxidative stress and is independent of the toxicity of Ag+ ions. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available